An In-Depth Overview of TCP
Connections

In chapter 2, Getting to Grips with Socket APIs, we implemented a simple
TCP server that served a web page with HTTP. In this chapter, we will begin
by implementing a TCP client. This client is able to establish an [Pv4 or IPv6
TCP connection with any listening TCP server. It will be a useful debugging
tool that we can reuse in the rest of this book.

Our TCP server from the last chapter was limited to accepting only one
connection. In this chapter, we will look at multiplexing techniques to allow
our programs to handle many separate connections simultaneously.

The following topics are covered in this chapter:

o Configuring a remote address with getadarinto ()

e Initiating a TCP connection with connect ()

e Detecting terminal input in a non-blocking manner
o Multiplexing with forx ()

° MUItIPIGXIHg with select ()

e Detecting peer disconnects

o Implementing a very basic microservice

e The stream-like nature of TCP

e The blocking behavior of sena()

Technical requirements

The example programs for this chapter can be compiled with any modern C
compiler. We recommend MinGW on Windows and GCC on Linux and
macOS. See appenaix &, Setting Up Your C Compiler On Windows, rppendix c,
Setting Up Your C Compiler On Linux, and zppendix o, Setting Up Your C
Compiler On macOS, for compiler setup.

The code for this book can be found in this book's GitHub repository: nttps://

github.com/codeplea/Hands-On-Network-Programming-with-C.

From the command line, you can download the code for this chapter with the
following command:

git clone https://github.com/codeplea/Hands-On-Network-Programming-with-C
cd Hands-On-Network-Programming-with-C/chap03

Each example program in this chapter runs on Windows, Linux, and macOS.
While compiling on Windows, each example program requires that you link
with the Winsock library. This can be accomplished by passing the -1ws2 32
option to gee.

We provide the exact commands that are needed to compile each example as
it is introduced.

All of the example programs in this chapter require the same header files and
C macros that we developed in chapter 2, Getting to Grips with Socket APIs.
For brevity, we put these statements in a separate header file, chapos.n, which
we can include in each program. For an explanation of these statements,
please refer to cnaprer 2, Getting to Grips with Socket APIs.

The contents of chapos.n 1s as follows:

/*chap03.h*/

#if defined(WIN32)
#ifndef WIN32 WINNT

#define
#endif
#include
#include
#pragma

#else

#include
#include
#include
#include
#include
#include
#include

#endif

#if defi
#define
#define
#define

#else
#define
#define
#define
#define
#endif

#include
#include

_WIN32 WINNT 0x0600

<winsock2.h>
<ws2tcpip.h>
comment (1ib, "ws2 32.1ib")

<sys/types.h>
<sys/socket.h>
<netinet/in.h>
<arpa/inet.h>
<netdb.h>
<unistd.h>
<errno.h>

ned (WIN32)

ISVALIDSOCKET (s) ((s) !'= INVALIDfSOCKET)
CLOSESOCKET (s) closesocket (s)
GETSOCKETERRNO () (WSAGetLastError())

ISVALIDSOCKET (s) ((s) >= 0)
CLOSESOCKET (s) close(s)
SOCKET int

GETSOCKETERRNO () (errno)
<stdio.h>

<string.h>

Multiplexing TCP connections

The socket APIs are blocking by default. When you use accept () to wait for an
incoming connection, your program's execution is blocked until a new
incoming connection is actually available. When you use recv() to read
incoming data, your program's execution blocks until new data is actually
available.

In the last chapter, we built a simple TCP server. This server only accepted
one connection, and it only read data from that connection once. Blocking
wasn't a problem then, because our server had no other purpose than to serve
its one and only client.

In the general case, though, blocking I/O can be a significant problem.
Imagine that our server from cnapter 2, Getting to Grips with Socket APIs,
needed to serve multiple clients. Then, imagine that one slow client
connected to it. Maybe this slow client takes a minute before sending its first
data. During this minute, our server would simply be waiting on the recv)
call to return. If other clients were trying to connect, they would have to wait
it out.

Blocking on recv() like this 1sn't really acceptable. A real application usually
needs to be able to manage several connections simultaneously. This 1s
obviously true on the server side, as most servers are built to manage many
connected clients. Imagine running a website where hundreds of clients are
connected at once. Serving these clients one at a time would be a non-starter.

Blocking also 1sn't usually acceptable on the client side either. If you imagine
building a fast web browser, it needs to be able to download many images,
scripts, and other resources in parallel. Modern web browsers also have a
tab feature where many whole web pages can be loaded in parallel.

What we need is a technique for handling many separate connections
simultaneously.

Polling non-blocking sockets

It is possible to configure sockets to use a non-blocking operation. One way
to do this 1s by calling scne1 () with the o nowsrock flag (ioct1socket () With

the rrons10 flag on Windows), although other ways also exist. Once in non-
blocking mode, a call to recv() with no data will return immediately. See cnapt
er 13, Socket Programming Tips and Pitfalls, for more information.

A program structured with this in mind could simply check each of its active
sockets in turn, continuously. It would handle any socket that returned data
and ignore any socket that didn't. This is called polling. Polling can be a
waste of computer resources since most of the time, there will be no data to
read. It also complicates the program somewhat, as the programmer is
required to manually track which sockets are active and which state, they are
in. Return values from recv() must also be handled differently than with
blocking sockets.

For these reasons, we won't use polling in this book.

Forking and multithreading

Another possible solution to multiplexing socket connections is to start a new
thread or process for each connection. In this case, blocking sockets are fine,
as they block only their servicing thread/process, and they do not block other
threads/processes. This can be a useful technique, but it also has some
downsides. First of all, threading is tricky to get right. This is especially true
if the connections must share any state between them. It is also less portable
as each operating system provides a different API for these features.

On Unix-based systems, such as Linux and macOS, starting a new process is
very easy. We simply use the sork() function. The orx () function splits the
executing program into two separate processes. A multi-process TCP server
may accept connections like this:

while (1) {

socket client = accept (socket listen, &new client, &new client length);

int pid = fork():;

if (pid == 0) { //child process
close (socket listen);
recv (socket client, ...);
send (socket client, ...);
close (socket client);
exit (0);

}

//parent process

close (socket client);

}

In this example, the program blocks on accept (). When a new connection is
established, the program calls rorx () to split into two processes. The child
process, where pia - o, only services this one connection. Therefore, the
child process can use recv () freely without worrying about blocking. The
parent process simply calls ciose () on the new connection and returns to
listening for more connections with accept ().

Using multiple processes/threads 1s much more complicated on Windows.
Windows provides createrrocess (), createrhread (), and many other functions for

these features. However—and I can say this objectively—they are all much
harder to use than Unix's fork ().

Debugging these multi-process/thread programs can be much more difficult
compared to the single process case. Communicating between sockets and
managing shared state is also much more burdensome. For these reasons, we

will avoid sork) and other multi-process/thread techniques for the rest of this
book.

That being said, an example TCP server using fork is included in this
chapter's code. It's named tcp serve toupper fork.c. It does not run on Windows,
but it should compile and run cleanly on Linux and macOS. I would suggest
finishing the rest of this chapter before looking at it.

The select() function

Our preferred technique for multiplexing is to use the seiect () function. We
can give seiect () @ set of sockets, and it tells us which ones are ready to be
read. It can also tell us which sockets are ready to write to and which sockets
have exceptions. Furthermore, it is supported by both Berkeley sockets and
Winsock. Using seiect () keeps our programs portable.

Synchronous multiplexing with
select()

The se1ect () function has several useful features. Given a set of sockets, it can
be used to block until any of the sockets in that set is ready to be read from. It
can also be configured to return if a socket is ready to be written to or if a
socket has an error. Additionally, we can configure seiect () to return after a
specified time if none of these events take place.

The C function prototype for seiect () 1s as follows:

int select (int nfds, fd set *readfds, fd set *writefds,
fd set *exceptfds, struct timeval *timeout);

Before calling seiect), we must first add our sockets into an fa sec. If we
have three SOCketS, socket listen, socket a, and socket b, WE€ add them to
an 4 _set, like this:

fd set our sockets;

FD ZERO (&our_ sockets);

FD SET (socket_listen, &our sockets);
FD SET (socket a, &our sockets);

FD SET (socket b, &our sockets);

It is important to zero-out the ta set Using ro_zzro() before use.

Socket descriptors are then added to the ta_se+ one at a time using o ser(). A
socket can be removed from an 4 set using =o crr(), and we can check for the
presence of a socket in the set using ro rsser ().

You may see some programs manipulating an ra_set directly. I recommend that
you use only #p zero(), ¥p seT(), ¥ cLr(), and rp_rsser() to maintain portability
between Berkeley sockets and Winsock.

select () also requires that we pass a number that's larger than the largest
socket descriptor we are going to monitor. (This parameter is ignored on

Windows, but we will always do it anyway for portability.) We store the
largest socket descriptor in a variable, like this:

SOCKET max socket;

max socket = socket listen;

if (socket a > max socket) max socket = socket a;
if (socket b > max socket) max socket = socket b;

When we call seiect), it modifies our ra_set of sockets to indicate which
sockets are ready. For that reason, we want to copy our socket set before
calling it. We can copy an za_set with a simple assignment like this, and then
call seiect) like this:

fd set copy;
copy = our_ sockets;

select (max socket+l, ©, 0, 0, 0);

This call blocks until at least one of the sockets is ready to be read from.
When seiect () returns, copy 1s modified so that it only contains the sockets that
are ready to be read from. We can check which sockets are still in copy using
rp_15seT (), like this:

if (FD_ISSET (socket listen, ©)) {
//socket listen has a new connection
accept (socket listen...

}

if (FD ISSET (socket a, ©)) |
//socket a is ready to be read from
recv (socket a...

}

if (FD_ISSET (socket b, ©)) |
//socket b is ready to be read from
recv (socket b...

In the previous example, we passed our rq set as the second argument to
select (). If we wanted to monitor an a_sec for writability instead of
readability, we would pass our a set as the third argument to seiect ().
Likewise, we can monitor a set of sockets for exceptions by passing it as the
fourth argument to seiect ().

select() timeout

The last argument taken by se1ect () allows us to specify a timeout. It expects a
pointer to struct timeval. The timevar structure is declared as follows:

struct timeval {
long tv_sec;
long tv usec;

tv_sec holds the number of seconds, and tv usec holds the number of
microseconds (1,000,000th second). If we want seiect () to wait a maximum
of 1.5 seconds, we can call it like this:

struct timeval timeout;

timeout.tv _sec = 1;

timeout.tv _usec = 500000;
select (max socket+l, ©, 0, 0, &timeout);

In this case, seiect () returns after a socket in a4 set copy 1s ready to read or
after 1.5 seconds has elapsed, whichever is sooner.

If timeout.tv sec = 0 and timeout.tv usec = 0, then select () returns immediately
(after changing the ra set as appropriate). As we saw previously, if we pass
in a null pointer for the timeout parameter, then seiect c does not return until
at least one socket is ready to be read.

select () can also be used to monitor for writeable sockets (sockets where we
could call sena() without blocking), and sockets with exceptions. We can
check for all three conditions with one call:

|select(max_sockets+l, &ready to read, &ready to write, &excepted, &timeout);

On success, se1ect () 1tself returns the number of socket descriptors contained
in the (up to) three descriptor sets it monitored. The return value is zero if it
timed out before any sockets were readable/writeable/excepted. seiect ()
returns -1 to indicate an error.

Iterating through an fd_set

We can iterate through an ¢a set using a simple sor loop. Essentially, we start
at 1, since all socket descriptors are positive numbers, and we continue
through to the largest known socket descriptor in the set. For each possible
socket descriptor, we simply use b 1sser() to check if it is in the set. If we

wanted to call crosesocrer () for every socket in the 4 set master, we could do it
like this:

SOCKET 1;
for (i = 1; i <= max_ socket; ++1i) {
if (FD_ISSSET (i, &master)) {
CLOSESOCKET (i) ;
}
}

This may seem like a brute-force approach, and it actually kind ofis.
However, these are the tools that we have to work with. rp_1sser() runs very
fast, and it's likely that processor time spent on other socket operations will
dwarf what time was spent iterating through them in this manner.
Nevertheless, you may be able to optimize this operation by additionally
storing your sockets in an array or linked list. I don't recommend that you
make this optimization unless you profile your code and find the simple for
loop iteration to be a significant bottleneck.

select() on non-sockets

On Unix-based systems, seiect () can also be used on file and terminal 1/0O,
which can be extremely useful. This doesn't work on Windows, though.
Windows only supports se1ect () for sockets.

A TCP client

It will be useful for us to have a TCP client that can connect to any TCP
server. This TCP client will take in a hostname (or IP address) and port
number from the command line. It will attempt a connection to the TCP
server at that address. If successful, it will relay data that's received from
that server to the terminal and data inputted into the terminal to the server. It
will continue until either it is terminated (with Ctrl + C) or the server closes
the connection.

This is useful as a learning opportunity to see how to program a TCP client,
but it is also useful for testing the TCP server programs we develop
throughout this book.

Our basic program flow looks like this:

recv()

Socket
closed by
peer?

close()

Yes

No

getaddrinfo()

v

socket()

v

connect()

Has
socket()
input?

fgets(stdin)

l

send()

printf()

Our program first uses getaddrinto() to resolve the server address from the
command-line arguments. Then, the socket is created with a call to socket ().
The fresh socket has connect () called on it to connect to the server. We use
select () t0 monitor for socket input. seiect () also monitors for
terminal/keyboard input on non-Windows systems. On Windows, we use the
_wonit () function to detect terminal input. If terminal input is available, we
send it over the socket using sena (). If se1ect () indicated that socket data is
available, we read it with recv () and display it to the terminal. This se1ect ()
loop is repeated until the socket is closed.

TCP client code

We begin our TCP client by including the header file, chapos.n, which was
printed at the beginning of this chapter. This header file includes the various
other headers and macros we need for cross-platform networking:

/*tcp_client.c*/

#include "chap03.h"

On Windows, we also need the conio.n header. This 1s required for the xonit ()
function, which helps us by indicating whether terminal input is waiting. We
conditionally include this header, like so:

/*tcp _client.c*/

#if defined(WIN32)
#include <conio.h>
#endif

We can then begin the rain() function and initialize Winsock:

/*tcp client.c*/
int main(int argc, char *argvl[]) {

#if defined(WIN32)
WSADATA d;
if (WSAStartup (MAKEWORD (2, 2), &d)) {
fprintf (stderr, "Failed to initialize.\n");
return 1;
}
#endif

We would like our program to take the hostname and port number of the server
it should connect to as command-line arguments. This makes our program
flexible. We have our program check that these command-line arguments are
given. If they aren't, it displays usage information:

/*tcp_client.c*/

if (argc < 3) {
fprintf (stderr, "usage: tcp client hostname port\n");

return 1;

arge contains the number of argument values available to us. Because the first
argument is always our program's name, we check that there is a total of at
least three arguments. The actual values themselves are stored in argv ;.

We then use these values to configure a remote address for connection:

/*tcp_client.c*/

printf ("Configuring remote address...\n");

struct addrinfo hints;

memset (&hints, 0, sizeof (hints));

hints.ai socktype = SOCK STREAM;

struct addrinfo *peer address;

if (getaddrinfo(argv[l], argv[2], &hints, &peer address)) {
fprintf (stderr, "getaddrinfo() failed. (%d)\n", GETSOCKETERRNO()) ;
return 1;

This is similar to how we called getadarinto() 1N chapter 2, Getting to Grips
with Socket APIs. However, in chapter 2, Getting to Grips with Socket APlIs,
we wanted it to configure a local address, whereas this time, we want it to
configure a remote address.

We set hints.ai socktype = SOCK STREAM to tell getaddrinfo () that we want a TCP
connection. Remember that we could set socx pcran to indicate a UDP
connection.

In chapter 2, Getting to Grips with Socket APIs, we also set the family. We
don't need to set the family here, as we can let getadarinso) decide if IPv4 or
IPv6 is the proper protocol to use.

For the call to getaaarinzo () itself, we pass in the hostname and port as the first
two arguments. These are passed directly in from the command line. If they
aren't suitable, then getaddarinto () returns non-zero and we print an error
message. If everything goes well, then our remote address is in the peer address
variable.

getaddrinfo () 18 very flexible about how it takes inputs. The hostname could be
a domain name like exampie.com Or an IP address such as 192.165.17.23 or ::1. The

port can be a number, such as so, or a protocol, such as nt«p.

After getaaarinto() configures the remote address, we print it out. This 1sn't
really necessary, but it is a good debugging measure. We use getnaneinfo() t0
convert the address back into a string, like this:

/*tcp client.c*/

printf ("Remote address is: ");

char address buffer[100];

char service buffer[100];

getnameinfo (peer address->ai addr, peer address->ai addrlen,
address buffer, sizeof(address_buffer),
service buffer, sizeof (service buffer),
NI NUMERICHOST) ;

printf ("%s %$s\n", address buffer, service buffer);

We can then create our socket:

/*tcp client.c*/

printf ("Creating socket...\n");
SOCKET socket peer;
socket peer = socket (peer address->ai family,
peer address->ail socktype, peer address->ai protocol);
if (!ISVALIDSOCKET (socket peer)) {
fprintf (stderr, "socket() failed. (%d)\n", GETSOCKETERRNO()) ;
return 1;

This call to socker () 1s done in exactly the same way as it was 1n chapter 2,
Getting to Grips with Socket APIs. We US€ peer aaaress to set the proper socket

family and protocols. This keeps our program very flexible, as the socxet () call
creates an IPv4 or IPv6 socket as needed.

After the socket has been created, we call connect () to establish a connection to
the remote server:

/*tcp client.c */

printf ("Connecting...\n");
if (connect (socket peer,
peer address->ai addr, peer address->ai addrlen)) {

fprintf (stderr, "connect() failed. (%d)\n", GETSOCKETERRNO()) ;
return 1;

}

freeaddrinfo(peer_address);

connect () takes three arguments—the socket, the remote address, and the remote
address length. It returns o on success, so we print an error message if it
returns non-zero. This call to connect () 1s extremely similar to how we called
bind() 1N chapter 2, Getting to Grips with Socket APIs. Where vina () associates
a socket with a local address, connect () associates a socket with a remote
address and initiates the TCP connection.

After We'Ve Called connect () Wlth peer address, WE USC the freeaddrinfo () ﬁmction
to free the memory for peer addaress.

If we've made it this far, then a TCP connection has been established to the
remote server. We let the user know by printing a message and instructions on
how to send data:

/*tcp client.c */

printf ("Connected.\n") ;
printf ("To send data, enter text followed by enter.\n");

Our program should now loop while checking both the terminal and socket for
new data. If new data comes from the terminal, we send it over the socket. If
new data is read from the socket, we print it out to the terminal.

It is clear we cannot call recv() directly here. If we did, it would block until
data comes from the socket. In the meantime, if our user enters data on the
terminal, that input is ignored. Instead, we use seiect (). We begin our loop and
set up the call to seiect (), like this:

/*tcp client.c */
while (1) {

fd set reads;

FD ZERO (&reads) ;

FD SET (socket peer, &reads);
#if !defined(WIN32)

FD SET (0, &reads);
#endif

struct timeval timeout;
timeout.tv sec = 0;
timeout.tv usec = 100000;

if (select (socket peer+l, &reads, 0, 0, &timeout) < 0) {
fprintf (stderr, "select() failed. (%d)\n", GETSOCKETERRNO ()) ;

return 1;

First, we declare a variable, fa set reaas, to store our socket set. We then zero
it with o zero() and add our only socket, socket peer.

On non-Windows systems, we also use seiect () to monitor for terminal input.
We add stain to the reaas set with eo ser (0, sreaas). This works because o 1s the
file descriptor for stain. Alternatively, we could have used o szt (fiteno (stdin),
sreaas) to the same effect.

The Windows seiect () function only works on sockets. Therefore, we cannot
use select () to monitor for console input. For this reason, we set up a timeout
to the seiect () call for 100 milliseconds (100,000 microseconds). If there is no
socket activity after 100 milliseconds, se1ect () returns, and we can check for
terminal input manually.

After seiect () returns, we check to see whether our socket s set in reads. If it
1s, then we know to call recv() to read the new data. The new data is printed to
the console with prints():

/*tcp_client.c*/

if (FD ISSET (socket peer, &reads)) {

char read[4096];
int bytes received = recv(socket peer, read, 4096, 0);
if (bytes received < 1) {

printf ("Connection closed by peer.\n");

break;
}
printf ("Received (%d bytes): %.*s",

bytes received, bytes received, read);

Remember, the data from recv () 1s not null terminated. For this reason, we use
the =.+s prints() format specifier, which prints a string of a specified length.

recv () NOrmally returns the number of bytes read. If it returns less than 1, then
the connection has ended, and we break out of the loop to shut it down.

After checking for new TCP data, we also need to check for terminal input:

/*tcp_client.c */

#if defined(WIN32)
if (_kbhit()) {
#else
if (FD_ISSET (0, &reads)) {
fendif
char read[4096];
if (!fgets(read, 4096, stdin)) break;
printf ("Sending: %s", read);
int bytes sent = send(socket peer, read, strlen(read), 0);
printf ("Sent %d bytes.\n", bytes sent);

}

On Windows, we use the xenit() function to indicate whether any console
input is waiting. xwnit () returns non-zero if an unhandled key press event is
queued up. For Unix-based systems, we simply check if seiect () sets the stain
file descriptor, o. If input is ready, we call fgets) to read the next line of input.
This 1nput is then sent over our connected socket with sena).

Note that sgets () includes the newline character from the input. Therefore, our
sent input always ends with a newline.

If the socket has closed, sena() returns -1. We ignore this case here. This is
because a closed socket causes se1ect () to return immediately, and we notice
the closed socket on the next call to recv(). This is a common paradigm in TCP
socket programming to ignore errors on send () While detecting and handling
them on recv (). It allows us to simplify our program by keeping our connection
closing logic all in one place. Later in this chapter, we will discuss other
concerns regarding send ().

This seiect () based terminal monitoring works very well on Unix-based
systems. It also works equally well if input is piped in. For example, you
could use our TCP client program to send a text file with a command such

dS cat my file.txt | tcp client 192.168.54.122 8080.

The Windows terminal handling leaves a bit to be desired. Windows does not
provide an easy way to tell whether stqin has input available without
blocking, so we use xwnit() as a poor proxy. However, if the user presses a
non-printable key, such as an arrow key, it still triggers wonit (), even though
there is no character to read. Also, after the first key press, our program will
block on fgets) until the user presses the Enter key. (This doesn't happen on

shells that buffer entire lines, which is common outside of Windows.) This
blocking behavior is acceptable, but you should know that any received TCP
data will not display until after that point. xwnit(does not work for piped
input. Doing proper piped and console input on Windows is possible, of
course, but it's very complicated.

We would need to use separate functions for each (reexvanearipe () and
peekconsoletnput ()), and the logic for handling it would be as long as this entire
program! Since handling terminal input isn't the purpose of this book, we're
going to accept xonit() function's limitations and move on.

At this point, our program is essentially done. We can end the wni1e loop, close
our socket, and clean up Winsock:

/*tcp client.c */
}

printf ("Closing socket...\n");
CLOSESOCKET (socket peer) ;

#if defined(WIN32)
WSACleanup () ;
#endif

printf ("Finished.\n");
return 0;

}

That's the complete program. You can compile it on Linux and macOS like
this:

|gcc tcp _client.c -o tcp_client
Compiling on Windows with MinGW is done like this:

|gcc tcp_client.c -o tcp_client.exe -lws2 32

To run the program, remember to pass in the remote hostname/address and
port number, for example:

|tcp_client example.com 80

Alternatively, you can use the following command:

| tep_client 127.0.0.1 8080

A fun way to test out the TCP client would be to connect to a live web server
and send an HTTP request. For example, you could connect to exampie.con ON
port so and send the following HTTP request:

GET / HTTP/1.1
Host: example.com

You must then send a blank line to indicate the end of the request. You'll
receive an HTTP response back. It might look something like this:

® S & root@ubby16: /home/lv/chap03

root@ubbyl16: /home/lv/chap@3# ./tcp client example.com http
Configuring remote address...

Remote address is: 93.184.216.34 http
Creating socket...

Connecting...

Connected.

To send data, enter text followed by enter.
GET / HTTP/1.1

Sending: GET / HTTP/1.1

Sent 15 bytes.

Host: example.com

Sending: Host: example.com

Sent 18 bytes.

Sending:

Sent 1 bytes.

Received (1592 bytes): HTTP/1.1 200 OK
Cache-Control: max-age=604800
Content-Type: text/html; charset=UTF-8
Date: Tue, 30 Oct 2018 19:59:46 GMT
Etag: "1541025663+ident”

Expires: Tue, 06 Nov 2018 19:59:46 GMT

Last-Modified: Fri, @9 Aug 2013 23:54:35 GMT
Server: ECS (ord/4CD5)

Vary: Accept-Encoding

X-Cache: HIT

Content-Length: 1270

<!doctype html>
<html>
<head>
<title>Example Domain</title=

<meta charset="utf-8" />
<meta http-equiv="Content-type" content="text/html; charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<style type="text/css">
body {

background-color: #fofefz;

margin: 0;

padding: 0;

font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans

-serif;

}

A TCP server

Microservices have become increasingly popular in recent years. The idea of
microservices is that large programming problems can be split up into many
small subsystems that communicate over a network. For example, if your
program needs to format a string, you could add code to your program to do
that, but writing code is hard. Alternatively, you could keep your program
simple and instead connect to a service that provides string formatting for
you. This has the added advantage that many programs can use this same
service without reinventing the wheel.

Unfortunately, the microservice paradigm has largely avoided the C
ecosystem,; until now!

As a motivating example, we are going to build a TCP server that converts
strings into uppercase. If a client connects and sends re110, then our program
will send serro back. This will serve as a very basic microservice. Of
course, a real-world microservice might do something a bit more advanced
(such as left-pad a string), but this to-uppercase service works well for our
pedagogical purposes.

For our microservice to be useful, it does need to handle many simultaneous
incoming connections. We again use seiect () to see which connections need to
be serviced.

Our basic program flow looks like this:

recv()

Socket
closed by
peer?

close()

getaddrinfo()

A 4

socket()

bind()

A 4

listen()

A

select()

A

New
connection?

accept()

Has

Yes socket()

A

input?

No

toupper()

\ 4

send()

Like in chapter 2, Getting to Grips with Socket APIs, our TCP server

USES getaddrinfo () t0 obtain the local address to listen on. It creates a socket
with socket (), US€S vind () t0 associate the local address to the socket, and
uses 1isten() to begin listening for new connections. Up until that point, it is

essentially identical to our TCP server from chapeer 2, Getting to Grips with
Socket APIs.

However, our next step is not to call accept () to wait for new connections.
Instead, we call seciect o, which alerts us 1f a new connection is available or
if any of our established connections have new data ready. Only when we
know that a new connection is waiting do we call accept (). All established
connections are put into an =a set, which is passed to every subsequent
setect () call. In this same way, we know which connections would block on
recv (), and we only service those connections that we know will not block.

When data is received by recv (), we run it through toupper 0 and return it to the
client using send ().

This 1s a complicated program with several new concepts. Don't worry about
understanding all the details right now. The flow is only intended to give you
an overview of what to expect before we dive into the actual code.

TCP server code

Our TCP server code begins by including the needed headers, starting main (),
and initializing Winsock. Refer to crapeer 2, Getting to Grips with Socket
APlIs, 1f this doesn't seem familiar:

/*tcp_serve toupper.c*/

#include "chap03.h"
#include <ctype.h>

int main() {

#if defined(WIN32)
WSADATA d;
if (WSAStartup (MAKEWORD (2, 2), &d)) {
fprintf (stderr, "Failed to initialize.\n");
return 1;
}
fendif

We then get our local address, create our socket, and vina(). This is all done
exactly as explained in chapter 2, Getting to Grips with Socket APIs:

/*tcp serve toupper.c */

printf ("Configuring local address...\n");
struct addrinfo hints;

memset (&hints, 0, sizeof (hints));
hints.ai family = AF INET;

hints.ai socktype = SOCK STREAM;

hints.ai flags = AI PASSIVE;

struct addrinfo *bind address;
getaddrinfo (0, "8080", &hints, &bind address);

printf ("Creating socket...\n");
SOCKET socket listen;
socket listen = socket (bind address->ai family,
bind address->ai socktype, bind address->ai protocol);
if (!ISVALIDSOCKET (socket listen)) {
fprintf (stderr, "socket () failed. (%d)\n", GETSOCKETERRNO ()) ;
return 1;

Note that we are going to listen on port soso. You can, of course, change that.
We're also doing an IPv4 server here. If you want to listen for connections on
[Pv6, then just change ar 1ver tO aF TNETS.

We then vina() our socket to the local address and have it enter a listening
state. Again, this is done exactly as in cnapter 2, Getting to Grips with Socket
APls:

/*tcp_serve toupper.c*/

printf ("Binding socket to local address...\n");
if (bind(socket listen,
bind address->ai addr, bind address->ai addrlen)) {
fprintf (stderr, "bind() failed. (%d)\n", GETSOCKETERRNO()) ;
return 1;
}

freeaddrinfo (bind address);

printf ("Listening...\n");

if (listen(socket listen, 10) < 0) {
fprintf (stderr, "listen() failed. (%d)\n", GETSOCKETERRNO ()) ;
return 1;

This is the point where we diverge from our earlier methods. We now define
an ra_set structure that stores all of the active sockets. We also maintain a
max_socket variable, which holds the largest socket descriptor. For now, we
add only our listening socket to the set. Because it's the only socket, it must
also be the largest, SO we Set max socket = socket listen tOO:

/*tcp _serve toupper.c */
fd set master;
FD ZERO (&master) ;

FD SET (socket listen, &master);
SOCKET max socket = socket listen;

Later in the program, we will add new connections to raster as they are
established.

We then print a status message, enter the main loop, and set up our call to

select ().

/*tcp_serve toupper.c */

printf ("Waiting for connections...\n");

while (1) {
fd set reads;
reads = master;
if (select (max socket+l, &reads, 0, 0, 0) < 0) {
fprintf (stderr, "select() failed. (%d)\n", GETSOCKETERRNO ()) ;
return 1;

This works by first copying our fa set master Int0 reads. Recall that seiect ()
modifies the set given to it. If we didn't copy naster, we would lose its data.

We pass a timeout value of o (NULL) to seiect () so that it doesn't return until a
socket in the master set 1s ready to be read from. At the beginning of our
program, master ONly contains socket 1isten, but as our program runs, we add
each new connection to master.

We now loop through each possible socket and see whether it was flagged by
select () as being ready. If a socket, x, was flagged by seiect (), then ro_1sser (x,
sreads) 18 true. Socket descriptors are positive integers, So we can try every
possible socket descriptor up to nax socket. The basic structure of our loop is
as follows:

/*tcp serve toupper.c */

SOCKET 1i;
for(i = 1; i <= max socket; ++1i) {
if (FD_ISSET (i, é&reads)) {
//Handle socket
}

Remember, =o sser() 1s only true for sockets that are ready to be read. In the
case Of socket 1isten, this means that a new connection is ready to be
established with accept (). For all other sockets, it means that data is ready to
be read with recv (). We should first determine whether the current socket is
the listening one or not. If it is, we call accept (). This code snippet and the one
that follows replace the //uandie socket comment in the preceding code:

/*tcp serve toupper.c */

if (i == socket listen) {
struct sockaddr storage client address;
socklen t client len = sizeof (client address);
SOCKET socket client = accept (socket listen,

(struct sockaddr*) &client address,
&client len);
if (!ISVALIDSOCKET (socket client)) {
fprintf (stderr, "accept() failed. (%d)\n",
GETSOCKETERRNO ()) ;
return 1;

}

FD SET (socket client, &master);
if (socket client > max socket)
max socket = socket client;

char address buffer[100];

getnameinfo ((struct sockaddr*)&client address,
client len,
address buffer, sizeof (address buffer), 0, 0,
NI NUMERICHOST) ;

printf ("New connection from %s\n", address buffer);

If the socket 1S socket 1isten, then We accept () the connection much as we did in
cnapter 2, Getting to Grips with Socket APls. We use o _ser() to add the new
connection's socket to the naster socket set. This allows us to monitor it with
subsequent calls to seiect). We also maintain max socket. As a final step, this
code prints out the client's address using getnameinfo ().

If the socket i 1S not socket 1isten, then it 1s instead a request for an established
connection. In this case, we need to read it with recv (), convert it into
uppercase using the built-in toupper () function, and send the data back:

/*tcp_serve toupper.c */

} else {
char read[1024];
int bytes received = recv(i, read, 1024, 0);
if (bytes received < 1) {
FD CLR(i, é&master);
CLOSESOCKET (i) ;
continue;

}

int 37

for (j = 0; j < bytes received; ++j)
read[j] = toupper (read[]j]);

send (i, read, bytes received, 0);

If the client has disconnected, then recv () returns a non-positive number. In
this case, we remove that socket from the naster socket set, and we also call
crosesockeT () ON 1t to clean up.

Our program is now almost finished. We can end the i¢ rp 1sse7() statement,
end the sor loop, end the «wni1e loop, close the listening socket, and clean up
Winsock:

/*tcp serve toupper.c */

} //if FD_ISSET
} //for i to max socket
} //while (1)

printf ("Closing listening socket...\n");
CLOSESOCKET (socket listen);

#if defined(WIN32)
WSACleanup () ;
#endif

printf ("Finished.\n");
return 0;

Our program is set up to continuously listen for connections, so the code after
the end of the wni1e loop will never run. Nevertheless, I believe it is still
good practice to include it in case we program in functionality later to abort
the wni1e loop.

That's the complete to-uppercase microservice TCP server program. You can
compile and run it on Linux and macOS like this:

gcc tcp_serve_toupper.c -o tcp_serve_ toupper
./tcp_serve toupper

Compiling and running on Windows with MinGW is done like this:

gcc tcp_serve_toupper.c -o tcp_serve toupper.exe -lws2_ 32
tcp_serve toupper.exe

You can abort the program's execution with Ctrl + C.

Once the program is running, [would suggest opening another terminal and
running the tcp c1ient program from earlier to connect to it:

| tep_client 127.0.0.1 8080

Anything you type in «cp_c1ient Should be sent back as uppercase. Here's what
this might look like:

root@ubby16: fhome/1lv/fchap03# ./tcp serve toupper
Configuring local address...

Creating socket...

Binding socket to local address...

Listening...

Waiting for connections...

New connection from 127.0.0.1

lv@ubbyl6:~fchap035% ./tcp client 127.0.0.1 8086
Configuring remote address...

Remote address is: 127.0.0.1 http-alt

Creating socket...

Received (13 bytes): HELLO WORLD!

As a test of the server program's functionality, try opening several additional
terminals and connecting with tcp ciient. Our server should be able to handle
many simultaneous connections.

Also included with this chapter's code is tcp serve toupper fork.c. This program
only runs on Unix-based operating systems, but it performs the same

functions as tcp serve toupper.c by Using fork () instead of seiect ().

The forx) function is commonly used by TCP servers, so I think it's helpful to
be familiar with it.

Building a chat room

It 1s also possible, and common, to need to send data between connected
clients. We can modify our tcp serve toupper.c program and make it a chat room

pretty easily.
First, locate the following code in tcp serve toupper.c:

/*tcp serve toupper.c excerpt*/

int j;

for (J = 0; j < bytes received; ++3)
read[j] = toupper(read[]j]);

send (i, read, bytes received, 0);

Replace the preceding code with the following:

/*tcp_serve chat.c excerpt*/

SOCKET 7;
for (J = 1; j <= max socket; ++3j) |
if (FD _ISSET(j, &master)) {
if (j == socket listen || J == 1)
continue;
else
send(j, read, bytes received, 0);

This works by looping through all the sockets in the master set. For each
socket, 5, we check that it's not the listening socket and we check that it's not
the same socket that sent the data in the first place. If it's not, we call sena() to
echo the received data to it.

You can compile and run this program in the same way as the previous one.

On Linux and macOS, this is done as follows:

gcc tcp_serve_chat.c -o tcp_serve_chat
./tcp_serve chat

On Windows, this 1s done as follows:

gcc tcp_serve chat.c -o tcp_serve chat.exe -1lws2 32
tcp_serve chat.exe

You should open two or more additional windows and connect to it with the
following code:

| tep_client 127.0.0.1 8080

Whatever you type in one of the tcp c1ient terminals get sent to all of the other
connected terminals.

Here 1s an example of what this may look like:

rootubby18: [home/lv/chapd3# . [tcp serve chat Lv@ubby16:~/chap03§ . [tcp client 127.0.0.1 8080
Configuring local address. .. Configuring remote address. ..
Creating socket... Remote address is: 127.0.0.1 http-alt
Binding socket to local address... Creating socket...
Listening. ..
Waiting for connections...
New connection from 127.0.6.1 To send data, enter text followed by enter.
New connection from 127.0.6.1 Received (23 bytes): Hello from terminal 1,
New connection from 127.6.6.1 Hello from a different terninal!
Sending: Hello from a different terninall
Gent 33 bytes.

LvQubby16:~/chap03§ . /tep client 127.0.0.1 8089 Lv@ubby16:~/chapd3§ . /tep client 127.0.0.1 8089
Configuring remote address. .. Confiquring renote address. ..

Remote address is: 127.9.0.1 http-alt Remote address is: 127.0.0.1 hitp-alt

Creating socket... Creating socket...

To send data, enter text followed by enter. To send data, enter text followed by enter,

Hello from terminal 1. Received (23 bytes): Hello from terminal 1.

Sending: Hello from terminal 1. Received (33 bytes): Hello from a different terminal!
Sent 23 bytes. i

Received (33 bytes): Hello from a different terninall

In the preceding screenshot, [am running tcp serve cnat in the upper-left
terminal windows. The other three terminal windows are running tcp ciient.
As you can see, any text entered in one of the tcp c1ient Wwindows is sent to the
server, which relays it to the other two connected clients.

Blocking on send()

When we call sena() with an amount of data, sena() first copies this data into
an outgoing buffer provided by the operating system. If we call sena() when
its outgoing buffer is already full, it blocks until its buffer has emptied
enough to accept more of our data.

In some cases where sena() would block, it instead returns without copying
all of the data as requested. In this case, the return value of sena () indicates
how many bytes were actually copied. One example of this is if your
program is blocking on sena() and then receives a signal from the operating
system. In these cases, it is up to the caller to try again with any remaining
data.

In this chapter's TCP server code section, we ignored the possibility that
send () could block or be interrupted. In a fully robust application, what we
need to do 1s compare the return value from sena() with the number of bytes
that we tried to send. If the number of bytes actually sent is less than
requested, we should use seiect () to determine when the socket is ready to
accept new data, and then call sena() with the remaining data. As you can
imagine, this can become a bit complicated when keeping track of multiple
sockets.

As the operating system usually provides a large enough outgoing buffer, we
were able to avoid this possibility with our earlier server code. If we know
that our server may try to send large amounts of data, we should certainly
check for the return value from sena().

The following code example assumes that currer contains vusser 1en bytes of
data to send over a socket called peer socket. This code blocks until we've
sent all of vurrer Or an error (such as the peer disconnecting) occurs:

int begin = 0;

while (begin < buffer len) ({
int sent = send(peer socket, buffer + begin, buffer len - begin, 0);
if (sent == -1) {

//Handle error

}
begin += sent;

}

If we are managing multiple sockets and don't want to block, then we should
put all sockets with pending senda() Into an s set and pass it as the third
parameter to seiect (). When se1ect () signals on these sockets, then we know
that they are ready to send more data.

chapter 13, Socket Programming Tips and Pitfalls, addresses concerns
regarding the sena() function's blocking behavior in more detail.

TCP is a stream protocol

A common mistake beginners make 1s assuming that any data passed into
send() can be read by recv() on the other end in the same amount. In reality,
sending data 1s similar to writing and reading from a file. If we write 10
bytes to a file, followed by another 10 bytes, then the file has 20 bytes of
data. If the file 1s to be read later, we could read 5 bytes and 15 bytes, or we
could read all 20 bytes at once, and so on. In any case, we have no way of
knowing that the file was written in two 10 byte chunks.

Using sena() and recv () works the same way. If you sena) 20 bytes, it's not
possible to tell how many recv() calls these bytes are partitioned into. It is
possible that one call to recv() could return all 20 bytes, but it is also
possible that a first call to recv() returns 16 bytes and that a second call to
recv () 18 Needed to get the last 4 bytes.

This can make communication difficult. In many protocols, as we will see
later in this book, it is important that received data be buffered up until
enough of it has accumulated to warrant processing. We avoided this issue in
this chapter with our to-uppercase sever by defining a protocol that operates
just as well on 1 byte as it does on 100. This 1sn't true for most application
protocols.

For a concrete example, imagine we wanted to make our tcp serve toupper
server terminate if it received the quit command through a TCP socket. You
could call send(socket, "quitr, 4, 0) onthe client and you may think that a call
to recv() on the server would return quit. Indeed, in your testing, it is very
likely to work that way. However, this behavior is not guaranteed. A call to
recv () could just as likely return qui, and a second call to recv() may be
required to receive the last «. If that is the case, consider how you would
interpret whether a quit command has been received. The straightforward
way to do it would be to buffer up data that's received from multiple recv ()
calls.

We will cover techniques for dealing with recv () buffering in section 2, An
Overview of Application Layer Protocols, of this book.

In contrast to TCP, UDP is not a stream protocol. With UDP, a packet is
received with exactly the same contents as it was sent with. This can
sometimes make handling UDP somewhat easier, as we will see in chapter 4,
Establishing UDP Connections.

Summary

TCP really serves as the backbone of the modern internet experience. TCP is
used by HTTP, the protocol that powers websites, and by Simple Mail
Transfer Protocol (SMTP), the protocol that powers email.

In this chapter, we saw that building a TCP client was fairly straightforward.
The only really tricky part was having the client monitor for local terminal
input while simultaneously monitoring for socket data. We were able to
accomplish this with se1ecc () on Unix-based systems, but it was slightly
trickier on Windows. Many real-world applications don't need to monitor
terminal input, and so this step isn't always needed.

Building a TCP server that's suitable for many parallel connections wasn't
much harder. Here, se1ect () was extremely useful, as it allowed a
straightforward way of monitoring the listening socket for new connections
while also monitoring existing connections for new data.

We also touched briefly on some common pain points. TCP doesn't provide a
native way to partition data. For more complicated protocols where this is
needed, we have to buffer data from recv() until a suitable amount is
available to interpret. For TCP peers that are handling large amounts of data,
buffering to sena() 1s also necessary.

The next chapter, chapter 4, Establishing UDP Connections, 1s all about UDP,
the counterpart to TCP. In some ways, UDP programming is simpler than
TCP programming, but it is also very different.

Questions

Try answering these questions to test your knowledge on this chapter:

1. How can we tell whether the next call to recv () Will block?
2. How can you ensure that seiect () doesn't block for longer than a
specified time?

3. When we used our tcp c1ient program to connect to a web server, why
did we need to send a blank line before the web server responded?

. Does sena() ever block?

. How can we tell whether the socket has been disconnected by our peer?

. Is data received by recv() always the same size as data sent with sena () ?

. Consider the following code:

N N LD A~

recv (socket peer, buffer, 4096, 0);
printf (buffer);

What is wrong with it?
Also see what is wrong with this code:

recv (socket peer, buffer, 4096, 0);
printf ("$s", buffer);

The answers can be found in zppenaix », Answers to Questions.

